

Prof.ssa Nadia Balucani

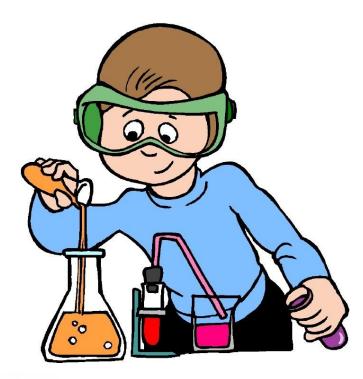
Dipartimento di Chimica, Biologia e Biotecnologie

Università degli Studi di Perugia

tel.: 075 585 5507 fax: 075 585 5606

email: nadia.balucani@unipg.it

tutto il materiale mostrato a lezione sarà reperibile sul sito


https://www.unistudium.unipg.it/unistudium/login/index.php

Classifica di gradimento delle materie scolastiche

(studenti delle scuole superiori)

- 1. Educazione fisica
- 2. Lingue straniere
- 3. Storia
- 4. Geografia
- 5. Matematica
- 6. Arte
- 7. Italiano
- 8. Educazione civica
- 9. Fisica
- 10. Biologia
- 11. Chimica

CHIMICA

scienza che studia la composizione delle varie **sostanze** costituenti la **materia** e le **trasformazioni** che tali sostanze possono subire

La chimica di tutti i giorni

- cottura di un alimento
- respirazione, visione
- uso di detergenti
- ricarica della batteria di un telefono cellulare

La chimica nelle scienze biologiche

BIOCHIMICA!

Chimica Organica Chimica Biologica Biochimica Chimica degli alimenti

Programma

- Stechiometria e teoria atomica della materia. Determinazione delle masse atomiche e delle formule molecolari. Isotopi. La mole. Formule chimiche ed equazioni chimiche. Calcoli stechiometrici. Nomenclatura.
- Struttura elettronica della materia. Modelli atomici. Principio di Aufbau per gli atomi polielettronici. Periodicità nelle proprietà atomiche. Legami ionici. Legami covalenti. Forma e struttura delle molecole.
- Gas, solidi e liquidi. Leggi dei gas. Forze intermolecolari e stati condensati. Proprietà di solidi e liquidi. Fasi e transizioni di stato.
- Termodinamica. Entalpia nelle trasformazioni chimiche. Equilibrio. Trasformazioni spontanee.
- Le Soluzioni. Composizione e preparazione di soluzioni. Principi di solubilità. Proprietà colligative.
- Equilibrio chimico. Legge di azione di massa. Costante di equilibrio. Fattori che influenzano lo stato di equilibrio.
- Equilibri ionici in acqua. Proprietà di acidi e basi. Modello di Brønsted-Lowry. Equilibri che coinvolgono acidi e basi deboli. Proprietà acido-base di soluzione saline. Soluzioni tampone. Equilibri di solubilità.
- Cenni di Elettrochimica e di Cinetica chimica. Reazioni di ossido riduzione. Potenziali standard. Velocità e ordine di reazione.

Libri di testo consigliati

- -D.A. McQuarrie, P. A. Rock, E. B. Gallogly, Chimica Generale, Zanichelli, II edizione italiana
- P. Atkins e L. Jones, Principi di Chimica, Zanichelli, III Edizione
- P. Tagliatesta, Chimica Generale e Inorganica, Edi-ermes
- Manotti Lanfredi, A .Tiripicchio, Fondamenti di Chimica. Con esercizi, Ed. Ambrosiana / CEA
- R. Bertani, C. Dore Augusto, G. Depaoli, P. Di Bernanrdo, Chimica Generale e Inorganica, Ed. Ambrosiana / CEA *Per le esercitazioni numeriche si consiglia:*
- I. Bertini, C. Luchinat, F. Mani, Stechiometria, Casa Editrice Ambrosiana, 5a Edizione, 2013
- + Tavola Periodica pieghevole (ad esempio Edizioni Morelli)

Modalità di accertamento

- Prova scritta (quesiti chiusi a risposta multipla) + prova orale

Sia la prova scritta che quella orale vertono su <u>tutto il</u> <u>programma</u> e <u>devono</u> essere sostenuti nella <u>stessa sessione</u> <u>d'esame</u>.

Durante la prova scritta è possibile utilizzare la Tavola Periodica e una calcolatrice scientifica (e basta!)

- CHIMICA: scienza che studia la <u>composizione</u> delle varie sostanze costituenti la materia e le <u>trasformazioni</u> che ciascuna sostanza può subire
- Materia: tutto ciò che esiste nell'universo, che occupa spazio e che è percepibile dai nostri sensi
- Sostanza: un dato tipo di materia caratterizzato da ben definite proprietà, la cui composizione è ben determinata e costante
- Energia: attitudine a compiere lavoro che un corpo o un sistema possiede a causa delle sue caratteristiche

 $lavoro = forza \times spostamento$ energia cinetica, potenziale, chimica, termica, radiante ecc.

- ⇒ legge della conservazione dell'energia
- Fenomeno: qualsiasi modificazione osservabile delle proprietà della materia fenomeni fisici: le sostanze restano inalterate nella loro natura e conservano la loro composizione subendo solo modificazioni in alcune loro proprietà

<u>fenomeni chimici</u>: le sostanze subiscono trasformazioni più profonde che interessano la loro stessa composizione - alcune sostanze scompaiono e al loro posto se ne formano delle nuove

Una *miscela* è un tipo di materia che può essere separato per via fisica in due o più sostanze; una *miscela eterogenea* è una miscela costituita di parti fisiche distinte ognuna con proprietà differenti; una *miscela omogenea* è invece uniforme nelle sue proprietà e composizione in ogni parte del campione.

trasformazione chimica

Una sostanza è un tipo di materia che non può essere ulteriormente separato in altri tipi di sostanze mediante processi fisici; una sostanza ha sempre certe determinare proprietà (ad es. colore, odore, peso specifico, temperatura di fusione ecc.) indipendentemente dalla sua origine.

Un *elemento* è una sostanza che non può essere decomposta tramite nessuna reazione chimica in sostanze più semplici.

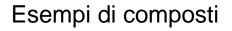
Un *composto* è una sostanza costituita da due o più elementi uniti da legami chimici; in un composto puro, qualsiasi sia la sua origine, gli elementi che lo compongono sono presenti in percentuali fisse.

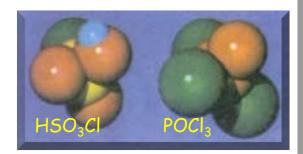
esistono milioni di composti sia di origine naturale che sintetica

... IMOTA

L'atomo è la più piccola parte di ogni elemento esistente in natura che ne conserva le caratteristiche chimiche.

Es. Un atomo di ferro ha tutte le proprietà microscopiche riconducibili all'elemento ferro.


... E MOLECOLE


Si definisce molecola la più piccola unità strutturale di un composto chimico (non ionico) che può esistere allo stato libero e che ne mantiene le medesime proprietà chimiche. Le molecole possono essere monoatomiche, cioè costituite da un solo atomo (è il caso dei cosiddetti gas nobili) o poliatomiche, cioè costituite da più atomi, uguali o diversi.

L'acqua è un composto che può essere trasformato con opportune trasformazioni chimiche in ossigeno e idrogeno, che sono gli elementi che compongono l'acqua. Né l'atomo di ossigeno, né l'atomo di idrogeno hanno le proprietà dell'acqua (composto). Una molecola di acqua (composta da ossigeno e idrogeno) ha invece tutte le proprietà microscopiche riconducibili al composto acqua.



acqua H₂O sale da cucina solido NaCl glucosio C₆H₁₂O₆ Soluzioni: miscele omogenee

 $CuSO_4$ (solido blu) sciolto in

acqua

Il linguaggio chimico 1.

I simboli degli elementi

Simboli: sono 'abbreviazioni' per indicare gli elementi:

idrogeno H (hydrogenium)

ossigeno O

fosforo P (phosphorus)

cloro Cl

sodio Na (natrium)

la seconda lettera di un simbolo è sempre minuscola !!

Co = cobalto

CO = monossido di carbonio

Gli elementi in ordine alfabetico...

Tabella 1.1 Gli ele	ementi chimici e i loro s	simboli					
Elemento	Simbolo	Elemento	Simbolo	Elemento	Simbolo	Elemento	Simbolo
Afnio	Hf	Cromo	Cr	Lutezio	Lu	Rubidio	Rb
Alluminio	Al	Curio	Cm	Meitnerio**	Mt	Rutenio	Ru
Americio	Am	Disprosio	Dy	Neo	Ne	Rutherfordio	Rf
Antimonio	Sb	Dubnio**	Db	Neodimio	Nd	Samario	Sm
Argento	Ag	Elio	He	Nettunio	Np	Scandio	Sc
Argo	Ar	Einstenio	Es	Nichel	Ni	Seaborgio**	Sg
Arsenico	As	Erbio	Er	Niobio	Nb	Selenio	Se
Astato	At	Europio	Eu	Nobelio	No	Silicio	Si
Attinio	Ac	Fermio	Fm	Olmio	Ho	Sodio	Na
Azoto	N	Ferro	Fe	Oro	Au	Stagno	Sn
Bario	Ba	Fluoro	F	Osmio	Os	Stronzio	Sr
Berillio	Be	Fosforo	P	Ossigeno	0	Tantalio	Ta
Berkelio	Bk	Francio	Fr	Palladio	Pd	Tecnezio	Tc
Bismuto	Bi	Gadolinio	Gd	Piombo	Pb	Tellurio	Te
Bohrio**	Bh	Gallio	Ga	Platino	Pt	Terbio	Tb
Boro	В	Germanio	Ge	Plutonio	Pu	Titanio	Ti
Bromo	В	Hassio**	Hs	Polonio	Po	Torio	Th
Cadmio	Cd	Idrogeno	Н	Potassio	K	Tulio	Tm
Calcio	Ca	Indio	In	Praseodimio	Pr	Tungsteno*	W
Californio	Cf	Iodio	I	Promezio	Pm	Uranio	U
Carbonio	C	Iridio	Ir	Protoattinio	Pa	Vanadio	V
Cerio	Ce	Itterbio	Yb	Radio	Ra	Xeno	Xe
Cesio	Cs	Ittrio	Y	Rado (Radon)	Rn	Zinco	Zn
Cloro	Cl	Lantanio	La	Rame	Cu	Zirconio	Zr
Cobalto	Co	Laurenzio	Lr	Renio	Re	Zolfo	S
Cripto	Kr	Litio	Li	Rodio	Rh		

^(*) Noto anche come Wolframio

^(**) Nuovi elementi

4	1 1A							- T		I A 1	orn	l O D	100						18 9A
1	Н	55	e ra	99	rup	pati	nell	a I A	100	LA	PEK		ICA		14	45	16	17	He
	1,00794	2 2A											8	13 3A	4A	15 5A	6B	7A	4,002 60
	3 Li	4											- 2	B	Ç	7 N	O	9 F	10
2	100000	Be			EI	eme	nti	cerc	hiat	ti:				1	100000	(E)(E)	100	0.00000	Ne
	6,941	9,0122	-		ai	امطه	ماء	2010						10,811	12,011	14,0067	15,9994	18,9984	20,1797
3	Na	Mg			Sin	nboli	aa	Cond	JSCE	r.e			42	Al	Si	Р	S	CI	Ar
	22,9898	24,3050	3B		4B	5B	6B	7B	_	— 8B —		1B	2B	26,9815	28,0855	30,9738	32,066	35,4527	39,948
	19	20	21		22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
o 4	K	Ca	Sc		Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Periodo	39,0983	40,078	44,5555		47,00	30,3413	31,9901	34,9301	33,011	30,3332	58,69	63,546	65,39	69,723	72,61	74,9216	78,96	79,904	83,80
Pe [Rb	Sr	39		Zr	Nb	Mo	Tc 43	44 D.	Rh	Pd	47	Cd 48	In	Sn	Sb	Te	53	Xe
5	(7) (7) (7) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	-	I			ATVATATES	100000000000000000000000000000000000000	7000	Ru	171777070	F 500	Ag	100000000000000000000000000000000000000		1000	170,770			
	85,4678 55	87,62 56	89,9059 57		91,224	92,9064	95,94 74	(98) 75	101,07 76	102,906 77	106,42 78	107,868 79	112,411	114,82	118,710 82	121,760	127,60	126,9045	131,29 86
6	Cs	Ba	La	*	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	132,9054	137,327	138,9055		178,49	180,9479	183,84	186,207	190,23	192,217	195,078	196,9665	200,59	2.4.3833	207,2	208,980	(209)	(210)	(222)
	87	88	89		104	105	106	107	108	109	110								
7	Fr	Ra	Ac	†	Rf	Db	Sg	Bh	Hs	Mt	Ds								
	(223)	226,025	227,028		(261)	(262)	(263)	(262)	[277]	[268,1388]	(281)								

*			
*Serie	dei	lanta	ınıdı

58 Ce	59 Pr 140,908	60 Nd	61 Pm (145)	5m 150,36	63 Eu 151,965	64 Gd 157,25	65 Tb 158,925	66 Dy 162,50	67 Ho 164,930	68 Er	69 Tm 168,934	70 Yb 173,04	71 Lu 174,967
90 Th 232,038	91 Pa 231,036	92 U 238,029	93 Np 237,048	94 Pu	95 Am	96 Cm	97 Bk (247)	98 Cf	99 Es	100 Fm	101 Md (258)	102 No (259)	103 Lr

Il linguaggio chimico 2.

Formule: rappresentano le sostanze, siano esse formate da molecole distinte (e in questo caso la formula rappresenta anche la molecola indicandoci il numero e la specie degli atomi che entrano a far parte della molecola stessa) o siano esse formate da reticoli ionici indefiniti (in questo caso la formula rappresenta il rapporto numerico più semplice nel quale gli atomi si trovano nel composto)

nella formula devono quindi essere indicati i simboli degli elementi che compongono la sostanza e il numero di atomi di ciascun elemento presenti nella singola molecola

ESEMPI di SOSTANZE ELEMENTARI e delle loro FORMULE CHIMICHE

Abbiamo visto come gli elementi o sostanze elementari siano formate da un unico tipo di atomi. Anche per queste sostanze la formula chimica ci dà informazioni quantitative, in particolare sul numero di atomi che entrano a far parte delle molecole discrete (se ovviamente quel certo composto ne forma)

es. i gas nobili (He, Ne, Ar) in natura sono presenti come gas monoatomici; di consequenza il simbolo è anche la formula che descrive queste sostanze

es. il cloro, l'idrogeno e l'ossigeno gassosi sono costituiti da molecole biatomiche di formula Cl_2 , H_2 , O_2 ; il fosforo esiste in natura come molecola formata dall'unione di 4 atomi e quindi scriverò P_4 ; lo zolfo esiste in natura come molecola formata dall'unione di 8 atomi e quindi scriverò S_8

NB la formula deve indicare il numero di atomi identici che formano il composto

es. nel caso degli elementi metallici, il simbolo e formula coincidono perché nel reticolo metallico sono presenti atomi tutti identici (quindi, per esempio, con il simbolo Fe indico sia un atomo di ferro che un pezzo di ferro metallico)

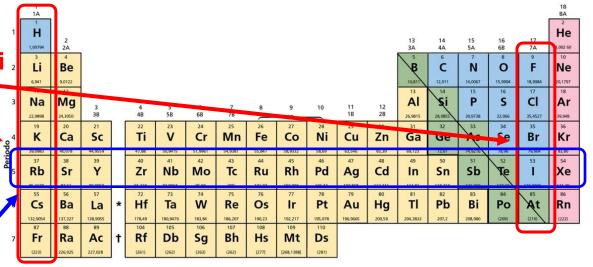
ESEMPI di COMPOSTI e delle loro FORMULE CHIMICHE

es. l'acqua è una molecola discreta formata da due atomi di idrogeno e un atomo di ossigeno la formula è quindi H_2O

es. il **cloruro di sodio** è costituito da un reticolo ionico in cui ioni sodio e ioni cloruro occupano posizioni regolari; nel solido per ogni atomo di sodio è presente un atomo di cloro e la formula è quindi **NaCl**

es. la molecola di acido solforico è formata da 2 atomi di idrogeno, un atomo di zolfo e 4 atomi di ossigeno; la formula è quindi H_2SO_4

un composto chimico è caratterizzato dalla sua formula e/o dal suo nome NOMENCLATURA CHIMICA

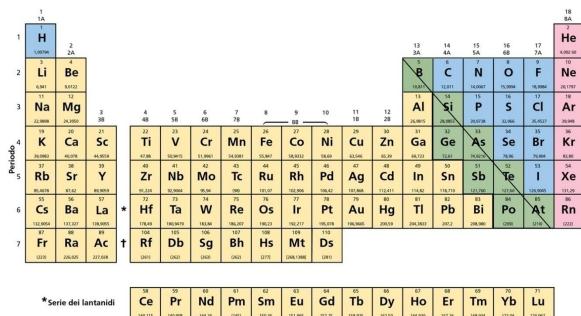


Iniziamo a familiarizzare con la Tavola Periodica degli elementi:

la disposizione degli elementi nella Tavola Periodica non è casuale...

• le colonne vengono
dette GRUPPI; gli elementi di un gruppo hanno
proprietà simili

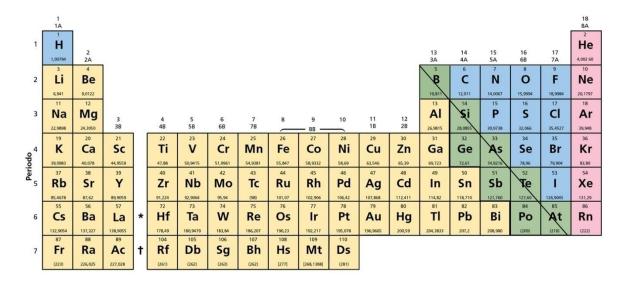
• le righe vengono dette PERIODI; le proprietà degli elementi variano in maniera graduale mano a mano che mi sposto lungo un periodo da sinistra a destra


*Serie dei lantanidi

58 Ce	59 Pr 140,908	Nd 144,24	Pm (145)	50 5m	63 Eu 151,965	64 Gd 157,25	65 Tb	66 Dy 162,50	67 Ho 164,930	68 Er 167,26	69 Tm 168,934	70 Yb 173,04	71 Lu 174,967
90 Th 232,038	91 Pa 231,036	92 U 238,029	93 Np 237,048	94 Pu	95 Am (243)	96 Cm	97 Bk (247)	98 Cf	99 Es	100 Fm	101 Md (258)	No (259)	103 Lr (260)

Iniziamo a familiarizzare con la Tavola Periodica degli elementi:

In base alle loro proprietà chimiche e fisiche gli elementi si distinguono in metalli (riquadri beige), non metalli (azzurro), metalloidi o semimetalli (grigio-verde)

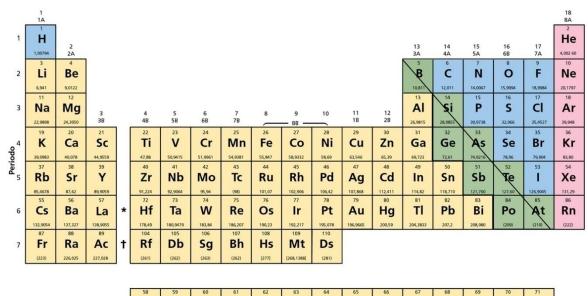

58 Ce	59 Pr 140,908	60 Nd	Pm (145)	5m 150,36	63 Eu 151,965	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu 174,967
90 Th 232,038	91 Pa 231,036	92 U 238,029	93 Np 237,048	94 Pu (244)	95 Am	96 Cm	97 Bk (247)	98 Cf (251)	99 Es	100 Fm	101 Md (258)	102 No (259)	103 Lr (260)

Iniziamo a familiarizzare con la Tavola Periodica degli elementi:

Metalli: ¾ degli elementi

- solidi a temperatura ambiente (eccetto il mercurio, Hg, che è liquido)
- hanno superfici lucenti, sono malleabili e duttili
- buoni conduttori di calore ed elettricità
- perdono facilmente elettroni esterni per formare <u>ioni positivi</u> detti *cationi*
- con l'ossigeno formano ossidi basici

*Serie dei lantanidi

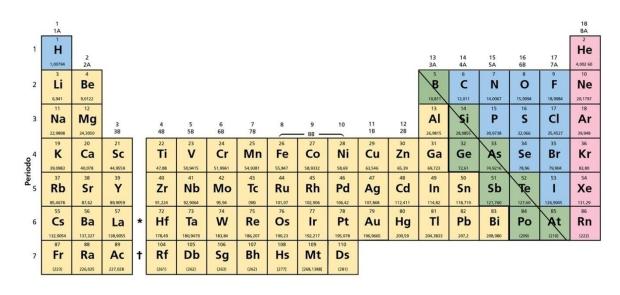

58 Ce	59 Pr 140,908	Nd 144,24	Pm (145)	50 Sm 150,36	63 Eu 151,965	64 Gd 157,25	65 Tb	66 Dy 162,50	67 Ho 164,930	68 Er 167,26	69 Tm 168,934	70 Yb 173,04	71 Lu 174,967
90 Th 232,038	91 Pa 231,036	92 U 238,029	93 Np 237,048	94 Pu (244)	95 Am	96 Cm	97 Bk (247)	98 Cf (251)	99 Es	100 Fm	101 Md (258)	102 No (259)	103 Lr (260)

Iniziamo a familiarizzare con la Tavola Periodica degli elementi:

Non Metalli: sono solo 17 elementi e si trovano in alto a destra

spesso gassosi a temperatura ambiente
quelli solidi (C, P, S, I) non sono affatto duttili
cattivi conduttori di calore ed elettricità
acquistano facilmente elettroni per formare ioni negativi detti anioni
con l'ossigeno formano ossidi acidi

*Serie dei lantanidi


58 Ce	59 Pr 140,908	Nd 144,24	Pm (145)	50 Sm 150,36	63 Eu 151,965	64 Gd 157,25	65 Tb	66 Dy 162,50	67 Ho 164,930	68 Er 167,26	69 Tm 168,934	70 Yb 173,04	71 Lu 174,967
90 Th 232,038	91 Pa 231,036	92 U 238,029	93 Np 237,048	94 Pu (244)	95 Am	96 Cm	97 Bk (247)	98 Cf (251)	99 Es	100 Fm	101 Md (258)	102 No (259)	103 Lr (260)

Iniziamo a familiarizzare con la Tavola Periodica degli elementi:

Semimetalli: sono gli elementi lungo la diagonale che divide metalli e non metalli

- hanno proprietà intermedie fra quelle dei metalli e dei non metalli
- sono semiconduttori

*Serie dei lantanidi

58 Ce	59 Pr 140,908	Nd	Pm (145)	62 Sm 150,36	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	Md Md	No No	103 Lr
232,038	231,036	238,029	237,048	(244)	(243)	(347)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Nomenclatura: il nome delle sostanze elementari

Tabella 1.2 Nomi	e simboli di alcuni elementi poliato	mici allo stato molecolare
Simbolo	Nome IUPAC	Nome corrente
C(gr)	carbonio (grafite)	grafite
C(d)	carbonio (diamante)	diamante
N_2	diazoto	azoto
P_4	tetrafosforo	fosforo bianco
O	monossigeno	ossigeno atomico (nascente)
O_2	diossigeno	ossigeno
O_3	triossigeno	ozono
S_8	ottazolfo	zolfo
$F_2(g)$	difluoro	fluoro
$Cl_2(g)$	dicloro	cloro
$\mathrm{Br}_2(l)$	dibromo	bromo
$I_2(s)$	diiodio	iodio

g = gas, l = liquido, s = solice II nome corrente dell'

Il nome corrente delle sostanze è quello di uso comune (per es. è anche il nome commerciale)

Nomenclatura: il nome dei composti

Numero di ossidazione

La trattazione del legame chimico (che affronteremo insieme più avanti) ha messo in evidenza che un atomo legandosi ad altri atomi modifica la propria struttura elettronica. L'atomo assume una configurazione elettronica diversa da quella che aveva prima di formare legami, o per acquisto o per perdita di uno o più elettroni (legame ionico) o per condivisione, molto spesso asimmetrica, di coppie di elettroni (legame covalente e covalente-polare).

... parleremo estesamente di configurazione elettronica e legame chimico più avanti nel corso...

La carica che assume effettivamente o formalmente l'atomo, in seguito a tale modificazione, è detta stato di ossidazione o numero di ossidazione, indicato brevemente con n.ox. oppure n.o.

Regole per determin

parleremo estesamente di numero di ossidazione quando tratteremo le reazioni di ossidoriduzione; per ora ci serve solo per attribuire il nome al Composto nei Casi in Cui un elemento può formare più Composti dello stesso tipo ma Con numero di ossidazione diverso

- 1) per atomi di una qualsiasi specie chimica allo stato elementare n.ox.=0
- 2) per gli elementi del gruppo I (metalli alcalini) n.ox.=+1
- 3) per gli elementi del gruppo II (metalli alcalino terrosi) n.ox.=+2
- 4) nei suoi composti, H ha n.ox.=+1, negli idruri dei metalli n.ox.=-1
- 5) nei suoi composti, O ha n.ox.=-2 (acqua ossigenata e perossidi: -1)
- 6) per qualsiasi elemento allo stato di ione monoatomico n.ox=carica dello ione
- 7) la somma degli n.ox. degli elementi presenti in una molecola neutra è uguale a zero; in uno ione poliatomico coincide con la carica dello ione

Dai nomi degli elementi si ricavano le radici da usare per formare i nomi dei relativi composti

	nome dell'elemento	radice	nome del composto
es.	ferro	ferr-	ossido ferr-oso cloruro ferr-ico
	iodio	iod-	iod-uro di piombo iod-ato di potassio

Eccezioni:

	nome dell'elemento	radice	esempi di composto
es.	azoto (N)	nitr-	acido nitr-oso
			acido nitr-ico
	zolfo (S)	solfor-	acido solfor-ico
		solf-	solf-ato di potassio
	fosforo (P)	fosfor-	acido fosfor-ico
		fosf-	fosf-ato di sodio
	arsenico (As)	arseni-	arseni-ato di sodio
		arsen-	acido arsen-ico
	manganese (Mn)	mangan-	mangan-ato di potassio
	stagno (Sn)	stann-	idrato stann-oso
	oro (Au)	aur-	cloruro aur-ico

OSSIDI

metalli+ossigeno → ossidi basici nonmetalli+ossigeno → ossidi acidi o anidridi

Alla parola ossido o anidride si fa seguire un attributo formato dalla radice dell'elemento che si è combinato con l'ossigeno e dal suffisso

-oso se il composto è formato dall'elemento nel suo numero di ossidazione più basso

-ico se il composto è formato dall'elemento nel suo numero di ossidazione più alto

Nel caso in cui l'elemento può assumere un unico numero di ossidazione, si usa il suffisso -ico o semplicemente si usa la preposizione di.

Es. il ferro ha numeri di ossidazione +2 e +3 FeO ossido ferroso Fe_2O_3 ossido ferrico

Nel caso in cui l'elemento possa assumere più di due numeri di ossidazione si ricorre anche all'uso di prefissi

ipo-	-oso	numero di ossidazione più piccolo	n.ox.
	-oso -ico		crescente
per-	-ico	numero di ossidazione più grande	

esempio:

n.ox.=+1
$$Cl_2O$$
 anidride ipoclorosa
Cl n.ox.=+3 Cl_2O_3 anidride clorosa
n.ox.=+5 Cl_2O_5 anidride clorica
n.ox.=+7 Cl_2O_7 anidride perclorica

Una nomenclatura alternativa fa uso dei prefissi mono-, bi-, tri-, tetra-, pentaper indicare il contenuto di ossigeno nella molecola

Es. V_2O_5 pent-ossido di divanadio OsO_4 tetr-ossido di osmio PbO_2 bi-ossido di piombo Fe_2O_3 sesqui-ossido di ferro sesqui indica un rapporto 2 a 3

La nomenclatura più moderna riporta semplicemente il numero di ossidazione espresso con un numero romano fra parentesi

Es. FeO ossido di ferro(II) Fe_2O_3 ossido di ferro(III) PbO ossido di piombo(II) PbO_2 ossido di piombo(IV)

IDROSSIDI o IDRATI

ossidi dei metalli (ossidi basici) + acqua → idrossidi

La nomenclatura segue quella degli ossidi corrispondenti, dove si sostituisce al termine ossido il termine idrato o idrossido

Es.
$$Na_2O + H_2O \rightarrow Na(OH)$$
ossido di sodio

FeO + $H_2O \rightarrow Fe(OH)_2$
ossido ferroso
idrossido ferroso
Fe $_2O_3 + H_2O \rightarrow Fe(OH)_3$
ossido ferrico
idrossido ferrico

se all'idrossido del metallo tolgo tutti gli ioni OH- mi resta uno ione positivo con tante cariche quante erano gli OH- iniziali; tale ione prende il nome in base alla carica che coincide con il n.ox.

Fe²⁺ ione ferroso
Fe³⁺ ione ferrico

ACIDI OSSIGENATI o OSSIACIDI ossidi dei nonmetalli (anidridi) + acqua → ossiacidi

Al nome acido sono associati gli stessi prefissi e suffissi associati all'anidride da cui deriva

Es.
$$CO_2$$
 + H_2O \rightarrow H_2CO_3 anidride carbonica acido carbonico SO_2 + H_2O \rightarrow H_2SO_3 anidride solforosa acido solforoso SO_3 + H_2O \rightarrow H_2SO_4 anidride solforica acido solforico

ACIDI OSSIGENATI o OSSIACIDI

ossidi dei nonmetalli (anidridi) + acqua → ossiacidi

Es.
$$Cl_2O + H_2O \rightarrow H_2Cl_2O_2 \rightarrow 2 \ HClO$$
 anidride ipoclorosa acido ipocloroso $Cl_2O_3 + H_2O \rightarrow H_2Cl_2O_4 \rightarrow 2 \ HClO_2$ anidride clorosa acido cloroso $Cl_2O_5 + H_2O \rightarrow H_2Cl_2O_6 \rightarrow 2 \ HClO_3$ anidride clorica acido clorico $Cl_2O_7 + H_2O \rightarrow H_2Cl_2O_8 \rightarrow 2 \ HClO_4$ anidride perclorica acido perclorico

Gli ossiacidi sono composti ternari, contengono cioè tre elementi: idrogeno, ossigeno e un nonmetallo (composti binari: due elementi

IDRACIDI

Composti binari dalle caratteristiche acide contenenti idrogeno e un non metallo II nome si forma con il suffisso -idrico

- 1) HF acido fluor-idrico
- 2) HCl acido clor-idrico
- 3) HBr acido brom-idrico
- 4) HI acido iod-idrico
- 5) H₂S acido solf-idrico
- 6) HCN acido cian-idrico

I RADICALI ACIDI o ANIONI (ioni negativi) DEGLI ACIDI

ciò che resta di un acido dopo aver tolto gli ioni idrogeno

$$-oso \rightarrow -ito; -ico \rightarrow -ato; -idrico \rightarrow -uro$$

Es. Cl-HCl acido clor-idrico ione clor-uro H₂SO₄ 50₄= acido solfor-ico ione solf-ato HCIO₄ CIO₄acido per-clor-ico ione per-clor-ato HCN CNacido cian-idrico ione cian-uro

lo ione reca una carica negativa per ogni ione idrogeno, H⁺, perso

La perdita parziale di ioni idrogeno da parte di acidi che possono perdere due o più ioni idrogeno dà luogo alla formazione di anioni che hanno ancora caratteristiche acide

Es.
$$H_2SO_4 \rightarrow HSO_4^- \rightarrow SO_4^=$$
acido solfor-ico ione idrogeno-solf-ato ione solf-ato o bi-solf-ato
$$H_2CO_3 \rightarrow HCO_3^- \rightarrow CO_3^=$$
acido carbon-ico ione idrogeno-carbon-ato ione carbon-ato o bi-carbon-ato


```
SALI
                   ACIDO + IDROSSIDO → SALE + acqua
il nome del sa
                         SO<sub>4</sub>=
                                        el radicale acido seguito all'aggettivo
derivante dal
                     ione solfato
          FeSO<sub>4</sub>
Es.
          solfato ferroso
        F_{2}(OH) + H_{2}SO_{4} \rightarrow FeSO_{4} + H_{2}O_{4}
      Fe.2+
                     ferroso + acido solforico → solfato ferroso
 ione ferroso
Es.
          NaCl
          cloruro di sodio
          NaOH + HCl \rightarrow NaCl + H<sub>2</sub>O
          idrossido di sodio + acido cloridrico \rightarrow cloruro di sodio
```


IDRURI

Composti binari metalli+idrogeno

LiH idruro di litio FeH₃ idruro ferrico AlH₃ idruro di alluminio

unici composti in cui n.ox. di idrogeno è -1

COMPOSTI CON NOMI PARTICOLARI

H₂O acqua

CH₄ metano

NH₃ ammoniaca NH₄⁺ ione ammonio

PH₃ fosfina

SiH₄ silano

 $S + 3/2 O_2 \rightarrow SO_3$

Nomenclatura delle sostanze inorganiche: schema riassuntivo

METALLI
$$\stackrel{+ O_2}{\Longrightarrow}$$
 OSSIDI BASICI $\stackrel{+ H_2O}{\Longrightarrow}$ IDROSSIDI (o BASI)

Na $+ \frac{1}{2}O_2 \rightarrow$ Na $_2O$ $+ H_2O \rightarrow$ 2 NaOH Ca $+ O_2 \rightarrow$ CaO $+ H_2O \rightarrow$ Ca(OH) $_2$ Fe $+ \frac{3}{2}O_2 \rightarrow$ Fe $_2O_3$ $+ \frac{6}{2}O_2 \rightarrow$ Fe $_2O_3$ $+ \frac{6}{2}O_2 \rightarrow$ Pe $_2O_3$ $+ \frac{1}{2}O_2 \rightarrow$ Na $_2CO_3 + \frac{1}{2}O_2 \rightarrow$ Na $_2CO_3 + \frac{1}{2}O_2 \rightarrow$ Na $_2CO_3 + \frac{1}{2}O_2 \rightarrow$ NaOH $+ \frac{1}{2}O_2 \rightarrow$ Ca $_3(PO_4)_2 + \frac{1}{2}O_3 \rightarrow$ Na $_2CO_3 + \frac{1}{2}O_4 \rightarrow$ Ca $_3(PO_4)_2 + \frac{1}{2}O_4 \rightarrow$ Ca $_3(PO_4)_4 \rightarrow$ Ca

 $+ H_2O \rightarrow H_2SO_4$

 $Fe_{2}(SO_{4})_{3} + H_{2}O$

solfato ferrico

 $2 P + 5/2 O_2 \rightarrow P_2O_5 + 3 H_2O \rightarrow 2 H_3PO_4$

Tabella 1.3 Alcuni esempi di cationi e anioni				
N.O.	Simbolo	Nome	Nome secondo Stock	
+1 (unico)	Na ⁺	ione sodio		
+3 (unico)	$A1^{3+}$	ione alluminio		
+2	Fe ²⁺	ione ferroso	ione ferro(II)	
+3	Fe ³⁺	ione ferrico	ione ferro(III)	
+2	Sn^{2+}	ione stannoso	ione stagno(II)	
+4	Sn ⁴⁺	ione stannico	ione stagno(IV)	
-1	Cl ⁻	ione cloruro		
-2	S^{2-}	ione solfuro		
-3	N ³⁻	ione azoturo		

Tabella 1.4 Alcuni esempi di ossidi basici					
N.O.	Formula	Nome comune	Nome IUPAC		
+1	Li ₂ O	ossido di litio	ossido di dilitio		
+1	Na ₂ O	ossido di sodio	ossido di disodio		
+2	MgO	ossido di magnesio	ossido di magnesio		
+2	CaO	ossido di calcio	ossido di calcio		
+2	CrO	ossido cromoso	ossido di cromo		
+3	Cr_2O_3	ossido cromico	triossido di dicromo		
+2	MnO	ossido manganoso	ossido di manganese		
+3	Mn_2O_3	ossido manganico	triossido di dimanganese		
+2	SnO	ossido stannoso	monossido di stagno		
+3	Tl_2O_3	ossido di tallio	triossido di ditallio		

Tabella 1.5 Alcuni esempi di ossidi acidi				
N.O.	Formula	Nome comune	Nome IUPAC	
+3	B_2O_3	anidride borica	triossido di diboro	
+2	CO	ossido di carbonio	(mon)ossido di carbonio	
+4	CO_2	anidride carbonica	diossido di carbonio	
+1	N ₂ O	protossido di azoto	ossido di diazoto	
+2	NO	ossido di azoto	(mon)ossido di azoto	
+3	N_2O_3	anidride nitrosa	triossido di diazoto	
+4	NO_2	anidride nitroso-nitrica	diossido di azoto	
+4	N_2O_4	ipoazotide	tetraossido di diazoto	
+5	N_2O_5	anidride nitrica	pentaossido di diazoto	
+3	P_4O_6	anidride fosforosa	esaossido di tetrafosforo	
+5	P_4O_{10}	anidride fosforica	decaossido di tetrafosforo	
+4	SO_2	anidride solforosa	diossido di zolfo	
+6	SO_3	anidride solforica	triossido di zolfo	
+1	Cl ₂ O	anidride ipoclorosa	ossido di dicloro	
+3	Cl ₂ O ₃	anidride clorosa	triossido di dicloro	
+5	Cl ₂ O ₅	anidride clorica	pentaossido di dicloro	
+7	Cl ₂ O ₇	anidride perclorica	eptaossido di dicloro	
+6	CrO ₃	anidride cromica	triossido di cromo	
+7	Mn ₂ O ₇	anidride permanganica	eptaossido di dimanganese	

Tabella 1.7 Gli idrossidi di alcuni metalli				
Composto	Nome corrente	IUPAC	Stock	
NaOH	soda caustica	idrossido di sodio		
Ca(OH) ₂	calce (spenta)	diidrossido di calcio		
Fe(OH) ₂	idrossido ferroso	diidrossido di ferro	idrossido di ferro(II)	
Fe(OH) ₃	idrossido ferrico	triidrossido di ferro	idrossido di ferro(III)	

Tabella 1.9 Alcuni esempi di ossiacidi e degli anioni corrispondenti					
N.O.	Anidride	Acido	Nome comune	Nome IUPAC	Nome anione
+3	B ₂ O ₃	H ₃ BO ₃	acido ortoborico	acido triossoborico	BO ₃ ³⁻ ortoborato
+3	B_2O_3	HBO_2	acido metaborico	acido diossoborico	BO ₂ metaborato
+4	CO_2	H_2CO_3	acido carbonico	acido triossocarbonico	CO ₃ ² - carbonato
+4	SiO_2	H ₄ SiO ₄	acido ortosilicico	acido tetraossosilicico	SiO_4^{2-} ortosilicato
+3	N_2O_3	HNO_2	acido nitroso	acido diossonitrico	NO ₂ nitrito
+5	N_2O_5	HNO_3	acido nitrico	acido triossonitrico	NO ₃ nitrato
+5	P_2O_5	H ₃ PO ₄	acido ortofosforico	acido tetraossofosforico	PO ₄ ³⁻ ortofosfato HPO ₄ ²⁻
					monoidrogenoortofosfato H ₂ PO ₄ diidrogenoortofosfato
		H ₄ P ₂ O ₇	acido pirofosforico	acido eptaossodifosforico	H ₂ P ₂ O ₇ ²⁻ pirofosfato diacido
		HPO_3	acido metafosforico	acido triossofosforico	PO ₃ metafosfato
+4	SO_2	H ₂ SO ₃	acido solforoso	acido triossosolforico	SO_3^{2-} solfito
+6	SO_3	H_2SO_4	acido solforico	acido tetraossosolforico	SO_4^{2-} solfato
+1	Cl ₂ O	HClO	acido ipocloroso	acido monossoclorico	ClO ⁻ ipoclorito
+3	Cl_2O_3	HClO ₂	acido cloroso	acido diossoclorico	ClO ₂ clorito
+5	Cl_2O_5	HClO ₃	acido clorico	acido triossoclorico	ClO ₃ clorato
+7	Cl ₂ O ₇	HClO ₄	acido perclorico	acido tetraossoclorico	ClO ₄ perclorato

Tabella 1.10 Esempi di sali derivati dagli acidi più comuni				
Acido	Sale	Nome comune	Nome IUPAC	
HCl acido cloridrico	CaCl ₂	cloruro di calcio	dicloruro di calcio	
HNO ₂ acido nitroso	$Al(NO_2)_3$	nitrito di alluminio	tridiossonitrato di alluminio	
H ₂ SO ₄ acido solforico	$Sn(SO_4)_2$	solfato stannico	ditetraossosolfato di stagno(IV)	
H ₃ PO ₄ acido fosforico	$Sn_3(PO_4)_2$	ortofosfato stannoso	ditetraossofosfato di stagno(II)	
H ₂ S acido solfidrico	ZnS	solfuro di zinco	solfuro di zinco	
H ₂ CO ₃ acido carbonico	$Fe_2(CO_3)_3$	carbonato ferrico	tritriossocarbonato di ferro(III)	
HClO ₄ acido perclorico	Ba(ClO ₄) ₂	perclorato di bario	ditetraossoclorato di bario	
H ₂ SO ₃ acido solforoso	Cu ₂ SO ₃	solfito rameoso	triossosolfato di rame(I)	
HNO ₃ acido nitrico	Pb(NO ₃) ₂	nitrato piomboso	ditriossonitrato di piombo(II)	
HClO ₃ acido clorico	NaClO ₃	clorato di sodio	triossoclorato di sodio	
HClO ₂ acido cloroso	LiClO ₂	clorito di litio	diossoclorato di litio	
HClO acido ipocloroso	NaClO	ipoclorito sodico	monossoclorato di sodio	

Tabella 1.11 Alcuni esempi di sali acidi			
Composto	Nome corrente	Nome IUPAC	
NaHCO ₃	carbonato acido di sodio (bicarbonato di sodio)	idrogenocarbonato di sodio	
KHSO ₃	solfito acido di potassio (bisolfito di potassio)	idrogenosolfito di potassio	
KHSO ₄	solfato acido di potassio (bisolfato di potassio)	idrogenosolfato di potassio	
NaH ₂ PO ₃	fosfito diacido di sodio	diidrogenofosfito di sodio	
NaH ₂ PO ₄	fosfato diacido di sodio	diidrogenofosfato di sodio	
K ₂ HPO ₄	fosfato monoacido di potassio	idrogenofosfato di dipotassio	

VERIFICA LA TUA PREPARAZIONE

Dopo lo studio di questa unità dovrai essere in grado di:

- definire i campi di studio ed applicazione della chimica;
- conoscere gli attributi essenziali della materia e definire l'energia;
- classificare i fenomeni in fisici e chimici
- riconoscere le miscele omogenee ed eterogenee;
- comprendere il concetto di sostanza
- usare in modo corretto i termini "elemento" e "composto"
- riconoscere i simboli degli elementi
- comprendere il significato delle formule chimiche e la loro relazione con la composizione delle sostanze
- definire il numero di ossidazione e conoscere i criteri per la sua attribuzione
- riconoscere alcuni tipi di composti inorganici (ossidi, anidridi, idrossidi acidi e sali) e riuscire ad attribuire loro un nome
- ricavare la formula dal nome di un composto inorganico e viceversa